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Abstract

In this paper the solution of some inverse problems for potential ®elds is tackled. The aim is to compute the
position and shape of an unknown ¯aw within a body, using some experimental measures as additional data. By the

linearization of the di�erence between the Boundary Integral Equation for the actual con®guration and the same
equation for an assumed con®guration, an integral equation for the variations is deduced. This integral equation is
carried to the boundary by a limiting process and a solution procedure is devised to compute an approximation to

the actual ¯aw. The solution method proceeds iteratively, solving a direct and an inverse problem in every step, but
no minimization algorithm is involved. The performance of the method is shown in several numerical
examples. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The present paper deals with the solution of some ill-posed problems which arise in several innovative

nondestructive techniques for testing materials and other ®elds in engineering. The experimental

procedures provide, in some cases, only qualitative information about defects or ¯aws inside the

material, but not quantitative results. To complete this information, several computational techniques

have been devised, based on ®nite di�erences, ®nite elements, and, more recently, boundary elements.

All these techniques try to solve an inverse problem, i.e., a problem where some information needed for

the direct solution of the problem is lacking, and it has to be computed using some measured data as

additional information.
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The boundary element method is a very apt tool for solving a large class of inverse problems where
the unknown is the boundary or part of it (a ¯aw) since it reduces the modeling e�ort to a minimum.
These problems have been tackled by several researchers by the boundary element method and di�erent
approaches have been proposed. Tanaka and Masuda (1989) used Taylor expansions with respect to the
design variables of the kernels and densities to obtain an integral equation for the sensitivities. They
solved the resulting integral equation iteratively but obtained good convergence only with many
experimental measurements (52 and more) and if the assumed ¯aw was close to the real one. The reason
may be that they disregarded the variation of the variables with respect to the change of the geometry,
obtaining, therefore, an incomplete integral equation. Nishimura and Kobayashi (1991) tackled the
identi®cation of cracks using the ¯ux Boundary Integral Equation (BIE) for the direct problem and the
potential BIE to de®ne a cost functional. They obtained good results, although a serious shortcoming of
their approach is that both potential and ¯ux have to be known along all the exterior boundary. Mitra
and Das (1992) solved the identi®cation inverse problem for the Laplace equation minimizing a
functional that did not contain any integration along the boundary of the ¯aw. However, they
computed the sensitivities of the functional by ®nite di�erences, therefore obtaining a slow convergence.
Zeng and Saigal (1992) developed a formulation for potential ®elds based on variations. Their approach
was similar to the Taylor expansion method proposed by Tanaka and Masuda (1989) although more
rigorous, but it was not completed either, as it will be shown in this paper. In addition, the authors
neither wrote their integral equation for a boundary point nor numerically solved the equation. Mellings
and Aliabadi (1993) developed a procedure for the identi®cation of cracks in two-dimensional potential
problems. They used implicit di�erentiation to compute the sensitivities and the BFGS algorithms to
minimize a quadratic residual. Nishimura and Kobayashi (1994) extended the ideas of their
aforementioned paper and were able to increase the number of design variables using regularization
techniques. Bonnet (1995) proposed the material di�erentiation approach in order to compute the
sensitivities of the cost functional. He applied this technique to the detection of obstacles in three-
dimensional linear acoustic media and obtained very good convergence for in®nite bodies. Finally,
Nishimura (1997) describes recent developments in the inverse Boundary Element Method for crack
determination. He presented results for both potential problems and elastodynamics. A recent and
complete introduction to the topic of inverse problems in Solid Mechanics can be found in the book by
Bui (1994).

In this paper, the identi®cation of a ¯aw whose shape and position is unknown beforehand is tackled,
although the equations are valid for the reconstruction problem as well, where the geometry is known
but the boundary conditions are not completely speci®ed. Only the case of cavities excited by a potential
®eld (thermal, antiplane elasticity, . . . ) is considered but the extension of this procedure to cracks,
inhomogeneities, and other excitation ®elds (acoustic, elastic, elastodynamics, . . .) ®elds, is
straightforward and is under way. The problem is the following: for a given body with an unknown
interior cavity, an excitation is applied on its boundary and the response is measured at some points on
the boundary; the aim is to ®nd the shape and position of the unknown cavity using the additional data
provided by the experimental measurements.

Most of the papers which deal with this problem propose solution procedures based on optimization
algorithms such as conjugate gradients, BFGS, etc. An objective function or residual is de®ned as the
di�erence between the computed variables and the measured ones, and the algorithm seeks the shape/
position of the ¯aw such that the objective function attains a minimum.

In this work, we propose a di�erent approach which is based on a Boundary Integral Equation for
the variation of the potential and ¯ux. These variations are de®ned as the di�erence between a measured
quantity and its computed value for an assumed ¯aw. The Variation Boundary Integral Equation
involves as unknowns the variation of the potential and ¯ux in part of the boundary and the variation of
the geometry, which are computed from the known boundary conditions for the variations and the
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experimental data. The Variation Boundary Integral Equation is discretized using advanced Boundary
Elements (BEs) (hypersingular kernels are involved), and the ensuing algebraic system of equations is
solved by least squares, since the number of unknowns is less than the number of equations. Some
numerical examples are presented, which assess the performance of the proposed procedure.

2. Inverse problems for potential ®elds

For a given direct or primary problem, di�erent inverse problems can be consider. In all cases, part of
the data which is known for a well-posed direct problem is not known. In order to ®nd this unknown
data, supplementary information have to be provided. Therefore, many di�erent inverse problems can
be posed, although only some of them may be of interest in practical applications. In this section, the
problem statement for the so-called identi®cation and reconstruction cases is presented, although only
the ®rst and more di�cult one is going to be detailed in the sequel.

2.1. Direct problem statement

The direct problem is very well known and can be stated as follows:

r 2u�x� � c�x� � 0; x 2 O �1�
with essential and/or natural boundary conditions,

u�x� � �u; x 2 Gu

q�x� � �q; x 2 Gq

where u�x� is the potential at a point x of the domain O; q�x� � @u=@n is the ¯ux at a point x on the
boundary G whose outward normal is n�x�; c�x� is a given source function: in the sequel c�x� � 0 is
considered, without lost of generality. Finally, �u and �q represent known values of the potential and ¯ux
on Gu and Gq, respectively, where Gu [ Gq � G and Gu \ Gq �b

2.2. Identi®cation inverse problem

In the identi®cation problem, a portion of the boundary, termed, Gh, is not known. Usually, Gh

represents the boundary of an interior ¯aw whose shape and location is sought. In order to ®nd this
¯aw, additional data has to be provided, besides the known boundary conditions. For example,
experimental measurements may be available at a set of points on Gc, the known portion of the
boundary,

u�xa � � �u�xa�, xa 2 Gc

q�xb � � �q�xb�, xb 2 Gc

where a � 1, . . . ,Mu and, b � 1, . . . ,Mq and therefore, M �Mu �Mq supplementary values are known.
In addition, measurements at points inside the domain O can be provided as well.
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2.3. Reconstruction inverse problem

In the reconstruction inverse problem, the geometry of the problem is determined, but the boundary
conditions are not completely known. This problem arises in cases where a portion of the boundary is
exposed to environmental conditions which can not be assessed due to physical di�culties or
geometrical inaccessibility. The aim in the reconstruction inverse problem is to ®nd the unknown
boundary conditions based on the supplementary data provided on the boundary and/or the domain, as
in the identi®cation problem. Obviously, an inverse problem can be de®ned where both reconstruction
of boundary conditions and identi®cation of part of the boundary were necessary.

2.4. Boundary integral equation for the potential problem

In the identi®cation problem, the boundary Gh is the main unknown of the problem. Therefore, the
statement of the problems in terms of BIEs appears as the very promising approach.

The potential problem stated in di�erential form in Eq. (1) can be written in terms of BIE (Brebbia
and Dominguez, 1978) by the equation,

c�x�u�x� �
�
G

�
u��y; x�q�y� ÿ q��y; x�u�y�

�
dG�y� �2�

where c�x�, called the free term, is 0 if x=2O [ G, 1 if x 2 O and y=2p if x 2 G, where y is the interior
angle between the left and right tangents to the boundary at the point x; u��y; x� � �1=2p� ln�1=r� is the
fundamental solution for the Laplace equation; r � jyÿ xj is the distance between the collocation point x
and the integration or observation point y; and q��y; x� � ÿ�1=2pr��@r=@n� is the ¯ux associated to the
potential u��y; x�:

3. Variation of the boundary integral equation

Consider a problem where a real ¯aw has the (unknown) boundary ~Gh: The value of the potential at
any point x is u�x, ~Gh�, where the new parameter ~Gh emphasizes that the potential depends on the
location of the ¯aw. Likewise the ¯ux is called q�x, ~Gh�: For an assumed location of the ¯aw, say Gh, the
potential and the ¯ux are u�x, Gh� and q�x, Gh�, respectively.

The actual domain is called ~O in the sequel, while the assumed domain, that is, the domain with the
assumed ¯aw is called O: To convert the assumed domain O to the actual domain ~O, a point x is
applied to a new point Äx � x� dx, where dx is the variation of the geometry. It has to be emphasized
that the whole domain is distorted in order to change the shape and position of the ¯aw from its
assumed location to the actual one (Fig. 1), and not only the points on the boundary of the ¯aw.
Previous works (Zeng and Saigal, 1992) disregarded this fact which is very important in order to arrive
at the right BIE.

Eq. (2) can be written for an interior point x in the assumed domain,

u�x, Gh � �
�
Gc

�
u��y; x�q�y, Gh� ÿ q��y; x�u�y, Gh�

�
dG�y�

�
�
Gh

�
u��y; x�q�y, Gh� ÿ q��y; x�u�y, Gh�

�
dG�y�

�3�

and the same equation can be set at the corresponding point Äx in the actual domain,
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u
ÿ
Äx, ~Gh

�
�
�
Gc

�
u��y; Äx�q

ÿ
y, ~Gh

�
ÿ q��y; Äx�u

ÿ
y, ~Gh

��
dG�y�

�
�

~Gh

�
u��Äy; Äx�q

ÿ
Äy, ~Gh

�
ÿ q��Äy; Äx�u

ÿ
Äy, ~Gh

��
dG�Äy� �4�

To derive the variation of the integral equation (Eq. (2)) the di�erence of Eqs. (3) and (4) will be
computed and linearized with respect to the variation of the geometry dx:

3.1. Variation of the potential and the ¯ux

The linearized integral equation will be written in terms of the di�erence of the potential and ¯ux
between the actual and the assumed domain. Then, the variation of the potential in the assumed
con®guration is de®ned as:

du�x� � u
ÿ
x, ~Gh

�
ÿ u�x, Gh � �5�

Therefore, du represents the di�erence in the potential at a given point x due to the variation of the
boundary of the domain. To de®ne dq, extra care has to be exercised since the ¯ux is de®ned at the
boundary of the domain, and this boundary changes when the geometry is distorted. Taking into
account that q�x��@u=@n�ru�x� � n�x�, the following de®nition has been adopted in this paper,

dq�x� �
�
ru
ÿ
x, ~Gh

�
ÿ ru�x, Gh�

�
� n�x� � rdu�x� � n�x� �6�

There are di�erent alternatives to de®ne the variation of the ¯ux, as will be shown when dealing with
the series expansion of the variables.

3.2. Variation integral equation

To derive the Variation Integral Equation, the variables at the actual con®guration are written in
terms of their values at the assumed con®guration, their gradients and the variation of the potential, the
¯ux and the geometry, as it is shown in the sequel.

Fig. 1. Change of the domain from the assumed con®guration to the actual one.
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First of all,

u
ÿ
Äx, ~Gh

�
� u�x, Gh� � du�x� � ru�x, Gh� � dx� h:o:t: �7�

to linear order, since du�x� stands for the di�erence due to the variation of the boundary of the domain,
and ru�x, Gh� � dx is the term due to the di�erence between Äx and x. Therefore, when computing the
di�erence between Eqs. (4) and (3), on the left-hand side, we obtain,

u
ÿ
Äx, ~Gh

�
ÿ u�x, Gh� ' du�x� � ru�x, Gh� � dx �8�

neglecting the higher order terms.
On the right-hand side, we ®nd several di�erences of integrals which we will handle separately.

Consider ®rst,

dI1 �
�
Gc

u��y; Äx�q
ÿ
y, ~Gh

�
dG�y� ÿ

�
Gc

u��y; x�q�y, Gh � dG�y� �9�

The kernel u��y; Äx� can be expanded as,

u��y; Äx� � u��y; x� � rxu��y; x� � dx� h:o:t: �10�

where the subscripts in rx means di�erentiation with respect to the collocation point x. However, u� is a
function on jyÿ xj and, therefore, rxu

��y; x��ÿryu
��y; x�:

Then,

u��y; Äx� � u��y; x� ÿ ru��y; x� � dx� h:o:t: �11�

where the subscript y will be dropped in the sequel.
The ¯ux, given by q�y, ~Gh��ru�y, ~Gh� � n�y�, can be expanded as,

q
ÿ
y, ~Gh

�
� r�u�y, Gh � � du�y�� � n�y� � h:o:t: �12�

using the de®nition of du in Eq. (5). Taking into account Eq. (6), the expansion

q
ÿ
y, ~Gh

�
� q�y, Gh� � dq�y� � h:o:t: �13�

is ®nally obtained.
Substituting Eqs. (11) and (13) in Eq. (9) and neglecting higher order terms, we obtain,

dI1 '
�
Gc

�
u��y; x�dq�y� ÿ ru��y; x�q�y, Gh� � dx

�
dG�y� �14�

Now consider the di�erence,

dI2 �
�
Gc

q��y; Äx�u
ÿ
y, ~Gh

�
dG�y� ÿ

�
Gc

q��y; x�u�y, Gh � dG�y� �15�

The kernel q��y; Äx� � ryu
��y; Äx� � n�y� is expanded as,

q��y; Äx� � ryu
��y; Äx� � n�y� � rx

�ryu
��y; x� � n�y�

� � dx� h:o:t: �16�

or
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q��y; Äx� � q��y; x� ÿ rq��y; x� � dx� h:o:t: �17�
where rq��y; x� is a short form of r�ru��y; x�� � n�y�:

Substituting this equation and the expansion of u�y, ~Gh� given by Eq. (7) in Eq. (15), and neglecting
second-order terms, we obtain,

dI2 '
�
Gc

�
q��y; x�du�y� ÿ rq��y; x�u�y, Gh� � dx

�
dG�y� �18�

Third, consider,

dI3 �
�

~Gh

u��Äy; Äx�q
ÿ
Äy, ~Gh

�
dG�Äy� ÿ

�
Gh

u��y; x�q�y, Gh � dG�y� �19�

In order to perform both integrals in this expression along the assumed boundary Gh, we can write,

dG�Äy� � �1� dJ� dG�y� �20�
Taking into account that dG�y� � jdyj � �dy � dy�1=2 and, dG�Äy� � jdy� ddyj � ��dy� ddy� � �dy� ddy��1=2,
(see Fig. 2), and clearing dJ from the former equation, one can write,

dJ � dG�Äy�
dG�y� ÿ 1 �

��dy� ddy� � �dy� ddy��1=2
�dy � dy�1=2 ÿ 1 �21�

Expanding the dot product in the numerator and neglecting higher order terms, one gets,

dJ �
�
1� 2

dy � ddy

dy � dy

�1=2

ÿ1 �22�

Finally, taking into account �1� x�1=2 � 1� �1=2�x� h:o:t: for x� 1, the expansion,

Fig. 2. Distortion of the boundary of the ¯aw.
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dJ � dy � ddy

dy � dy
� h:o:t: �23�

is obtained.
Then, dI3 can be written as,

dI3 '
�
Gh

h
u��Äy; Äx�q

ÿ
Äy, ~Gh

��1� dJ� ÿ u��y; x�q�y, Gh�
i

dG�y� �24�

Now, the kernel u��Äy; Äx� has to be expanded both in x and y. Therefore,

u��Äy; Äx� � u��y; x� � rxu
��y; x� � dx� ryu

��y; x� � dy� h:o:t: �25�

or,

u��Äy; Äx� � u��y; x� � ru��y; x� � �dyÿ dx� � h:o:t: �26�

On the other hand, for the expansion of the ¯ux, both the variation of the calculation point and the
variation of the outward normal have to taken into account.Therefore,

q
ÿ
Äy, ÄGGGh

�
� �ru�y,Gh� � rdu�y� � r

�ru�y, Gh �
� � dy

� � �n�y� � dn�y��� h:o:t: �27�

Expanding the dot product, neglecting second-order terms and taking into account the de®nition of the
¯ux variation in Eq. (6), we obtain,

q
ÿ
Äy, ~Gh

�
' q�y, Gh� � dq�y� � ru�y, Gh� � dn�y� � rq�y, Gh� � dy �28�

where rq�y, Gh� is a short form of r�ru�y, Gh�� � n�y�:
In regard to the variation of the outward normal, it can be readily shown that,

dn � dmÿ ndJ �29�

where dm��ry2 � t, ÿry1 � t�; t is the tangent vector to the boundary.
If Eqs. (26), (28) and (29) are substituted in Eq. (24), and second-order terms are neglected, the

following expansion is obtained,

dI3 '
�
Gh

�
u��y; x�dq�y� � u��y; x�ru�y, Gh� � dm�y� � u��y; x�rq�y, Gh� � dy� ru��y; x�q�y, Gh�

� �dyÿ dx�� dG�y� �30�

Finally, a similar approach can be used to linearized the fourth and last expression,

dI4 �
�

~Gh

q��Äy; Äx�u
ÿ
Äy, ~Gh

�
dG�Äy� ÿ

�
Gh

q��y; x�u�y, Gh � dG�y� �31�

the result being,
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dI4 '
�
Gh

�
q��y; x�du�y, Gh� � ru��y; x�u�y, Gh � � dm�y� � q��y; x�ru�y, Gh� � dy

� rq��y; x�u�y, Gh� � �dyÿ dx�� dG�y� �32�

where, again, rq��r�ru��y; x�� � n�y�:
Collecting the variations given by Eqs. (8), (14), (18), (30) and (32), the following Variation Boundary

Integral Equation is obtained,

du�x� � ru�x, Gh� � dx �
�
G

�
u��y; x�dq�y� ÿ q��y; x�du�y�

�
dG�y�

ÿ
�
Gc

�ru��y; x�q�y, Gh� ÿ rq��y; x�u�y, Gh�
� � dx dG�y�

�
�
Gh

��ru��y; x�q�y, Gh � ÿ rq��y; x�u�y, Gh�
� � �dyÿ dx�

� �u��y; x�rq�y, Gh� ÿ q��y; x�ru�y, Gh�
� � dy

� �u�y; x�ru�y, Gh� ÿ ru��y; x�u�y, Gh�
� � dm�y�

�
dG�y� �33�

The former equation relates the variation of the potential and the geometry at a point x 2 O, with the
variation of the potential, ¯ux and geometry along the boundary of the domain. The potential and ¯ux
of the primary problem on the assumed con®guration and their gradients appear in the equation as well,
but both can be computed by solving the direct problem.

This integral equation would be much more useful if we are able to write it for a point xxx 2 G, since,
in such case, only quantities along the boundary will be involved. A careful limiting process is
performed in the next section to carry x4xxx 2 G

4. Variation boundary integral equation for a point on the boundary

In order to obtain the sought after Variation Boundary Integral Equation, a careful limiting process
as the one performed for other formulations is carried out (see Guiggiani, 1992 and Gallego and
DomõÂ nguez, 1996)

To perform the limit of Eq. (33) as x4xxx 2 G two cases will be considered: xxx 2 Gc and xxx 2 Gh:
The ®rst case is readily carried out since dx � 0, and therefore, the singularities involved are those of

u� and q�, as in the direct BIE given in Eq. (2). Thus, when x4xxx 2 Gc, Eq. (33) leads to,

c�xxx�du�xxx� �
�
G

ÿ
u�dqÿ q�du

�
dG�

�
Gh

�ÿru�qÿ rq�u� � dy

� ÿu�rqÿ q�ru� � dy� �u�ruÿ ru�u� � dm
�

dG �34�

where c�xxx� is that of Eq. (2) and the ®rst integral is understood to be an improper one. The independent
variables will be dropped on the right-hand side for the sake of brevity in the sequel, if no confusion
arises.

The second case x4xxx 2 Gh is more complex since some of the kernels involved in the limit have
higher order singularities. Consider ®rst the integration along G: As in the previous case,
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�
G

�
u�dqÿ q�du

�
dG4 �1ÿ c�xxx��du�xxx� �

�
G

ÿ
u�dqÿ q�du

�
dG �35�

when x4xxx 2 G
Likewise,�

G

ÿ
u�rqÿ q�ru� � dy dG4 �1ÿ c�xxx��ru�xxx� � dxxx�

�
G

ÿ
u�rqÿ q�ru� � dy dG �36�

It bears emphasis that the former limits imply that both du�x� and ru�x� � dx are continuous functions at
xxx, and the same requirements should be ful®lled by the discretized variables.

The limit of the rest of the integrals is carried out by de®ning a distorted domain as shown in Fig. 3.
Consider ®rst,

lim
e40

�
GhÿSe�Ge

ÿru�qÿ rq�u� � �dyÿ dxxx� dG

� lim
e40

�
GhÿSe

ÿru�qÿ rq�u� � �dyÿ dxxx� dG� lim
e40

�
Ge

ÿru�qÿ rq�u� � �dyÿ dxxx� dG �37�

The integration over the boundary Ge can be handled analytically, regularizing the integrands by series
expansion. Taking into account that, ru� � ÿrr=�2pr� and since dyÿ dxxx40 as e40, then,

lim
e40

�
Ge

ru�q � �dyÿ dxxx� dG � 0 �38�

On the other hand, since rq� � ÿ�1=2pr2��nÿ 2rrrr � n� has a second-order singularity, the following
expansion is necessary,

u�y��dyÿ dxxx� � u�xxx�rdxxx � �yÿ xxx� � h:o:t: �39�

to perform the integral of rq�u � �dyÿ dxxx�, where rdxxx � rdy�xxx�, and h.o.t. stands for higher order
terms.

The integral can be regularized as follows,

Fig. 3. Modi®ed boundary for the limiting process.
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lim
e40

�
Ge

rq�u � �dyÿ dxxx� dG

� lim
e40

�
Ge

rq� � �u�dyÿ dxxx� ÿ u�xxx�rdxxx � �yÿ xxx�� dG� u�xxx� lim
e40

�
Ge

rq� � rdxxx � �yÿ xxx� dG �40�

The ®rst limit on the right-hand side vanishes since the integrand is regular, while the second one can be
performed analytically once the shape of Ge is ®xed. For the sake of simplicity, an arc of circle is chosen
for Ge, although any shape will lead to valid results (see Fig. 4). Thus,

lim
e40

�
Ge

rq� � rdxxx � �yÿ xxx� dG � 1

2p
rdxxx :

�y2
y1
hnni dy �41�

since on the arc rr � n, �yÿxxx�� en and dG � e dy;hnni represents a dyadic product, and the operator `:'
stands for the scalar product with respect to both indices, i.e., a : b � aijbij: The remaining integration is
easily performed,

b 0�x� � 1

2p

�02
01

hnnidy �
0@ y

4p � 1
8p�sin2y2 ÿ sin 2y1� 1

8p �cos 2y1 ÿ cos 2y2�
1
8p �cos 2y1 ÿ cos 2y2 � y

4p ÿ 1
8p �sin 2y2 ÿ sin 2y1�

1A �42�

Summing up,

lim
e40

�
GhÿSe�Ge

ÿru�qÿ rq�u� � �dyÿ dxxx� dG

� ÿu�xxx�rdxxx : b 0�xxx� �
�
Gh

ÿru�qÿ rq�u� � �dyÿ dxxx� dG �43�

where the integral on the right-hand side is understood to be a Cauchy principal value.
A similar approach can be employed to tackle the limit,

lim
e40

�
GhÿSe�Ge

�u�ruÿ ru�u� � dm dG �44�

In this limit, only the integral,

lim
e40

�
Ge

ru�u � dm dG �45�

leads to a free term. To compute it, the following expansions are used,

Fig. 4. Circular modi®ed boundary around a singular point.
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u�y� � u�xxx� � h:o:t: �46�

dm � �rdy2, ÿ rdy1� � t � �rdx2, ÿ rdx1� � t � h:o:t: �47�
where t is the tangent vector to the boundary.

Since ru� � ÿn=�2pe� along the arc Ge and n1 � t2, n2 � ÿt1, the regularization leads to,

ÿ lim
e40

u�xxx�
2pe

�
Ge

n � ��rdx2, ÿ rdx1� � t� dG � ÿu�xxx�rdxxx : b�xxx� �48�

where

b 00�xxx� � 1

2p

�
Ge

htti dG �
0@ y

4p ÿ 1
8p�sin 2y2 ÿ sin 2y1� ÿ 1

8p �cos 2y1 ÿ cos 2y2 �
ÿ 1

8p �cos 2y1 ÿ cos 2y2� y
4p � 1

8p �sin 2y2 ÿ sin 2y1�

1A �49�

and therefore,

lim
e40

�
GhÿSe�Ge

�u�ruÿ ru�u� � dm dG � ÿu�xxx�rdxxx : b�xxx� �
�
Gh

�u�ruÿ ru�u� � dm dG �50�

where the integral on the right-hand side is understood to be a Cauchy principal value, as well.
In summary, the limiting process outlined in this section when x4xxx 2 Gh leads to,

c�xxx��du�xxx� � ru�xxx� � dxxx�� b�xxx� : u�xxx�rdxxx �
�
G

ÿ
u�dqÿ q�du

�
dGÿ

�
G

ÿru�qÿ rq�u� � dxxx dG

�
�
Gh

�ÿru�qÿ rq�u� � dy� ÿu�rqÿ q�ru� � dy� �u�ruÿ ru�u� � dm
�

dG

�51�

which is the Variation BIE for a point xxx 2 Gh, where c�xxx� � y=2p and b�xxx� � b 0�xxx� � b�xxx�: It has to be
emphasized that this equation has not been obtained previously to the authors' knowledge.

The Eqs. (34) and (51) are valid for the points on the known boundary Gc and the unknown
boundary Gh, respectively. In fact, Eq. (51) comprises Eq. (34) since substituting dxxx � 0 in the ®rst one
leads to the second one. Therefore, Eq. (51) is the Variation Boundary Integral Equation (dBIE) for any
point xxx 2 G:

4.1. Boundary conditions for the inverse problem

The dBIE in Eq. (51) has to be completed with a set of boundary conditions for du and dq: These
boundary conditions for the inverse problem can be obtained by expanding the boundary conditions of
the primary problem with respect to the variations of the geometry, and linearizing the resulting
expression.

Four cases have to be distinguished depending on which are the boundary conditions for the primary
problem: known potential on Gc, known ¯ux on Gc, known potential on Gh and known ¯ux on Gh:
Actually, the last two cases encompass the ®rst two, and therefore, only those are outlined.

4.1.1. Known potential on Gh

In the primary problem, both in the actual and assumed con®guration, the boundary conditions are:
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u
ÿ
Äy, ~Gh

�
� �u �52�

u�y, Gh � � �u �53�
Expanding the di�erence of these conditions u�Äy, ~Gh�ÿu�y, Gh��0 we obtain, du�y� � ru�y� � dy � 0 and
therefore,

du�y� � ÿru�y� � dy �54�

4.1.2. Known ¯ux on Gh

In the primary problem, the boundary conditions are:

q
ÿ
Äy, ~Gh

�
� �q �55�

q�y, Gh � � �q �56�
Recalling Eq. (27) and the de®nition of dq in Eq. (6), the following equation is obtained,

dq�y� � ÿr�y, Gh� � dyÿ ru�y, Gh �dn�y� �57�
When �q � 0, this expression can be rewritten as,

dq�y� � ÿrq�y, Gh� � dyÿ ru�y, Gh �dm�y� �58�
since ru�y, Gh�dn�y��ru�y, Gh�dm�y�ÿ �q�y, Gh�dJ � ru�y, Gh�dm�y�

The boundary conditions for the inverse problem when the primary boundary conditions are known
potential or ¯ux on Gc, are simply du � 0 and dq � 0, respectively.

5. Boundary element discretization and solution method

In this section, the numerical solution of the set of integral equations comprised of the BIE of the
direct problem (Eq. (2)) and the dBIE of the inverse problem (Eq. (51)) is presented. The discretization is
dealt with in depth in Gallego and Suarez (1999), and therefore, it will be just outlined here.

The numerical solution of the dBIE is performed by the boundary element method. Standard
boundary elements can be used to interpolate the variations of potential �du�, ¯ux �dq� and geometry
�dy� in the dBIE. However, due to the continuity requirement established in the previous section, the
collocation points cannot be set at the element ends (see Gallego and DomõÂ nguez, 1996, for an
application of this idea to fracture dynamics problems).

The discretization of the primary BIE leads to the well known set of algebraical equations,

Hu � Gq �59�
where the vectors u � �u1, u2, . . . ,uN� and q � �q1, q2, . . . ,qN� collect the potential and ¯ux at the
interpolation nodes. After the application of the primary boundary conditions to the former set, a
square system of equations is obtained whose solution completely determined the vectors u and q.

On the other hand, the discretization of the inverse dBIE leads to the following set of equations,

Hdu � Gdq� DDDdx �60�
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where the vectors du and dq collect the variations of the potential and the ¯ux at the interpolation
nodes, respectively. The variation of the geometry of the boundary Gh is in the vector dx � �dx1,
dx2, . . . ,dxN�: The matrix DDD depends on the kernels u� and q�, and the potentials and ¯uxes at the nodes
computed in the direct problem. The application of the inverse boundary conditions yields,

HRdv � ÄDDDdx �61�

where dv are the N unknown variations of the potential and/or ¯uxes. The right-hand side matrix ÄDDD
proceeds form DDD and the boundary conditions.

The former set of N equations cannot be solved since the number of unknowns is N� 2Nh, where Nh

is the number of interpolation nodes on the boundary ~Gh: To solve it, the M experimental values are
taken into account. At the points on Gc where the potential is measured, du � u�y, ~Gh�ÿu�y, Gh� can be
computed since u�y, Gh� is known from the primary problem. Likewise at the points where the ¯ux is
measured, dq can be computed. The number of unknowns is, therefore, reduced to N� 2Nh ÿM: A
further reduction is necessary and this can be done by parameterizing the variation of the geometry,

dx � Pdg �62�

The vector dg has only six components which are: the variation of the center of the ¯aw �dxc, dyc�, the
variation of the rotation of the ¯aw �dw�, and the variation of the deformation of the ¯aw �dexx, deyy,
dexy�: It bears emphasis that it is the variation of the geometry of the ¯aw what is parameterized and
not the geometry of the ¯aw. A clear advantage of this approach is that this parameterized variation
can be applied to any shape for the assumed ¯aw. The assumed ¯aw is translated, rotated and distorted
by application of the transformation x4x�dx�x�Pdg:

This idea can be extended by applying a linear, quadratic, . . . , ®eld of distortion to the ¯aw,
increasing in, therefore, the number of geometrical parameters which de®ne the aforementioned
transformation (Gallego and Suarez, 1999).

Substituting Eq. (62) in Eq. (61) and collecting the unknowns to the left-hand side gives a non-square
system of equations

Adh � b �63�

The number of equations is N and the number of unknowns NÿM� 6: Obviously, Mr6, i.e. the
number of experimental measurements should be greater than or equal to the number of geometrical
parameters, in order to obtain a square or overdetermined system of equations.

The solution of this overdetermined system of equations can be tackle by the weighted least squares
method, which leads to the system,

ATWAdh � ATWb �64�

where W � diag�w1, w2, . . . ,wN� collects the set of weighting factors. In all the application solved, the
weights have been set to 1, but it is postulated that bigger weights in the equations corresponding to
points where the experimental measures are taken, would lead to an improvement in the convergence of
the method.

The solution of this system of equations yields the unknown geometrical parameters dg: By using Eq.
(62), dx is computed and the ¯aw shape updated. The procedure is repeated after convergence is
attained.
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6. Numerical results

Four sets of numerical applications are presented in this section in order to asses the performance of
the proposed approach. The ®rst two examples have been taken from the paper by Mitra and Das
(1992) for the sake of comparison. In this paper the authors minimize a functional by the Levengerg±
Marquadt algorithm assuming an elliptical shape for the ¯aw. The solution is further improved in a
second stage using a B-spline representation for the ¯aw, although this re®ned results will not be
considered in the comparisons hereinafter. The last two applications are more challenging since
simulated experimental errors are included in the ®rst, and two ¯aws are considered in the second one.
With these applications, the performance and range of validity of the method are demonstrated.

6.1. Centered elliptical ¯aw

The actual ¯aw is an ellipse whose semi-axes are a � 0:05 and b � 0:025: The ellipse is at the center of
a 2� 2 square and its major axis lies along the x-axis. The boundary conditions and the geometry are
shown in Fig. 5. The assumed ¯aw is a circle around the actual ¯aw of radius 0.1. The problem has
been solved with di�erent number of experimental measurements, M � 8, 10 and 12 and a discretization
of the ¯aw with eight quadratic elements and the exterior boundary with 16 quadratic elements, four per
side. The experimental data have been simulated simply by solving the direct problem with a direct BE
code. Some of the results are shown in Table 1 (node 1 is the lower right corner and has coordinates
(2,0)). For the ®rst case �M � 8), we took as experimental data the ¯ux in nodes 4, 8, 19 and 22, and
the potential in nodes 12, 16, 27 and 31. For the second case �M � 10), we added the ¯ux in node 5 and
the potential in node 29. Finally, for the third case �M � 12), we included the potential in node 14 and
the ¯ux in node 20.

The number of iterations needed to attain the convergence and the ®nal values of the semi-axis a and
b are shown in Table 2. For the sake of comparison, it bears emphasis that the number of iterations to
solve the same problem by the algorithm proposed by Mitra ranges from 81 to 83 depending on the
number of experimental measurements. The present procedure converges much faster than the approach
of Mitra, although the ®nal con®guration is not as close as with their algorithm. It should be noted that
the present approach do not minimize any residual at all, and therefore, when the assumed ¯aw and the
actual ¯aw are close enough, the resulting potential and ¯uxes on the boundary are very similar, and
therefore, the ``driving force'' which ``moves'' the ¯aw almost vanishes. In Fig. 6, the shapes of the

Fig. 5. Centered elliptical ¯aw: geometry, boundary conditions, actual and initial con®guration.

R. Gallego, J. SuaÂrez / International Journal of Solids and Structures 37 (2000) 5629±5652 5643



initial, ®nal and intermediate iterations are shown for the case of 12 experimental measurements. It can
be seen that the actual and the computed ¯aws are practically indistinguishable.

6.2. L-shape ¯aw

In this example, the ¯aw is an L-shape crack as shown in Fig. 7. The ¯aw is 0.1 units wide and its
arms are 0.3 units long. The geometry of the exterior boundary, the boundary conditions, the initial
assumed ¯aw and BE model are as in the foregoing example. The M � 20 simulated experimental data
have been used (see Table 3).

The ®nal and intermediate con®gurations of the ¯aw are shown in Fig. 8. The convergence is attained
in only eight iterations, while the procedure by Mitra et al. needs 29 iterations to arrive at the same
con®guration.

6.3. L-shape ¯aw: simulated experimental errors

In these series of examples, the geometry of the exterior boundary, the shape and position of the real
¯aw and the boundary conditions are as in the foregoing example. The initial assumed ¯aw now has the
same form as the real one, but it is displaced from its position, as shown in Fig. 9. For the BE model,
10 elements have been used for the assumed ¯aw and eight for the exterior boundary. Five set of
experimental measures have been simulated. The ®rst set has been generated as in the previous
examples, solving the problem by a direct BE code. The rest of the sets have been generated from this
one adding a random error to each measure with the values 21%, 22%, 23%, 25%, respectively. In
Table 4, the ®ve sets are listed.

Table 1

Simulated experimental data for the centered elliptical ¯aw (q ¯ux, u potential)

Node Coordinates Data

4 (2.00, 0.75) (q ) ÿ174.64
5 (2.00, 1.00) (q ) ÿ174.58
8 (2.00, 1.75) (q ) ÿ174.84
12 (1.25, 2.00) (u ) 181.22

14 (0.75, 2.00) (u ) 268.78

16 (0.25, 2.00) (u ) 356.28

19 (0.00, 1.50) (q ) 174.76

20 (0.00, 1.25) (q ) 174.64

22 (0.00, 0.75) (q ) 174.64

27 (0.50, 0.00) (u ) 312.54

29 (1.00, 0.00) (u ) 225.00

31 (1.50, 0.00) (u ) 137.46

Table 2

Results for the centered elliptical ¯aw

M Iteration No. a b

8 4 0.0275 0.0318

10 5 0.0433 0.0267

12 5 0.0471 0.0258
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The ®nal and intermediate con®gurations of the ¯aw are shown in Figs. 10±14 for each case. It can be
seen that the smaller the simulated errors, the closer the ®nal computed ¯aw to the real one, as can be
expected. For the simulated error 25%, the ®nal con®guration is very far from the real one. However,
consider Fig. 15 where the evolution of the residual function,

F�Gh� �
XM
i�1

ÿ
x ex
i ÿ xi

�2 �65�

is shown. In this de®nition, x ex represents an experimentally known quantity (potential or ¯ux) and xi

its computed value for a given position of the assumed cavity. It can be seen that the residual function
evolves until it attains a stable value, although the position of the ¯aw is not close to the ``real'' one.
Taking into account that given the magnitude of the error (5% in each measure), the set of experimental
measures is very far from the exact values of the boundary variables. In fact, the residual of this set of
errors with respect to the exact ones is about 860, and therefore, as shown in Fig. 15, the ®nal value of
the residual is of the same order as it can be expected. It is possible that other position of the ¯aw
closer to the real one could produce a similar or smaller residual, but the procedure is unable to ®nd it
since there is a local minimum of the residual function around the ®nally attained position.

6.4. Two real ¯aws

The exterior boundary is again a 2� 2 square with ¯ux and potential conditions as in the ®rst

Fig. 6. Centered elliptical ¯aw: intermediate and ®nal computed ¯aw.

Fig. 7. L-shape ¯aw: geometry, boundary conditions, actual and initial con®guration.
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Table 3

Simulated experimental data for the L-shape ¯aw (q ¯ux, u potential)

Node Coordinates Data

2 (2.00, 0.25) (q ) ÿ179.90
3 (2.00, 0.50) (q ) ÿ180.04
5 (2.00, 1.00) (q ) ÿ171.12
7 (2.00, 1.50) (q ) ÿ145.96
8 (2.00, 1.75) (q ) ÿ160.86
10 (1.75, 2.00) (u ) 92.40

11 (1.50, 2.00) (u ) 137.53

12 (1.25, 2.00) (u ) 184.94

14 (0.75, 2.00) (u ) 274.48

16 (0.25, 2.00) (u ) 358.40

18 (0.00, 1.75) (q ) 166.19

19 (0.00, 1.50) (q ) 166.00

20 (0.00, 1.25) (q ) 166.22

22 (0.00, 0.75) (q ) 168.22

24 (0.00, 0.50) (q ) 170.11

26 (0.25, 0.00) (u ) 357.38

27 (0.50, 0.00) (u ) 314.62

28 (0.75, 0.00) (u ) 271.57

30 (1.25, 0.00) (u ) 184.12

32 (1.75, 0.00) (u ) 94.90

Fig. 8. L-shape ¯aw: intermediate and ®nal computed ¯aw.

Fig. 9. L-shape ¯aw: geometry, boundary conditions, actual and initial con®guration, for the problem with simulated experimental

errors.
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example. The real defect is composed now by two ¯aws as shown in Fig. 16. The initially assumed ¯aw
(a centered circle), and the BE model are shown in this ®gure as well. M � 20 experimental values
computed by a direct BE code are provided for the identi®cation of the ¯aws (see Table 5).

The computed intermediate and ®nal shape and position of the ¯aw are shown in Fig. 17. The
proposed procedure converges to a ®nal ¯aw which is close to the real ¯aws in 20 iterations. The
residual decreases from its initial value, 78.39±0.50 which is almost negligible, taking into account the
magnitude of the variables and that the exact value is unattainable.

7. Conclusions

A new approach to solve inverse problem by the Boundary Element Method is presented in this
paper. The approach is well-suited for the so-called identi®cation inverse problem where part of the
boundary of a domain is unknown beforehand, and has to be estimated using additional experimental
data. Since these data usually pertains to boundary points, the use of Boundary Integral Equations

Table 4

Simulated experimental data for the L-shape ¯aw with random errors (q ¯ux, u potential)

Node Coordinates Exact data Data21% Data22% Data23% Data25%

6 (1.50, 2.00) (u ) 137.72 136.34 134.96 133.58 130.83

7 (1.00, 2.00) (u ) 231.10 228.79 226.48 224.17 219.54

8 (0.50, 2.00) (u ) 316.76 319.93 323.09 326.26 332.60

14 (0.50, 0.00) (u ) 314.67 317.82 320.96 324.11 330.40

15 (1.00, 0.00) (u ) 228.16 225.88 223.59 221.31 216.75

16 (1.50, 0.00) (u ) 139.70 141.10 142.50 143.90 146.69

Fig. 10. L-shape ¯aw: intermediate and ®nal computed ¯aw (experimental error 0%).
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seems particularly attractive. In this paper, the Variation Boundary Integral Equation is deduced. This
equation is ®rst computed for an interior point and then, through a limiting process, is carried to both
the known and the unknown part of the boundary. This approach is very convenient since the
derivation of the dBIE for an interior point has no di�culties associated to the presence of singular
integral, and the ensuing limit to the boundary can be carried out using techniques already developed

Fig. 11. L-shape ¯aw: intermediate and ®nal computed ¯aw (experimental error 1%).

Fig. 12. L-shape ¯aw: intermediate and ®nal computed ¯aw (experimental error 2%).
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for other Boundary Integral Equations. In this work, a complete derivation of the dBIE is provided,
improving previous attempts (Zeng and Saigal, 1992; Tanaka and Masuda, 1989) where some terms
were lacking. The dBIE can be discretized using advanced Boundary Element techniques giving rise to a
set of algebraic equations. These equations are solved using the least squares method since the number
of unknowns is less than the number of equations, provided that the number of experimental
measurements is bigger than the number of parameters which de®ned the variation of the ¯aw. Several

Fig. 13. L-shape ¯aw: intermediate and ®nal computed ¯aw (experimental error 3%).

Fig. 14. L-shape ¯aw: intermediate and ®nal computed ¯aw (experimental error 5%).
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Fig. 15. L-shape ¯aw: evolution of the residual for di�erent simulated errors.
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examples are presented which asses the performance of the method under severe testing conditions,
including experimental error in the data and existence of a number of ¯aws di�erent from the assumed.
A drawback of the proposed approach is the need of solving two systems of equations in every iteration
step. Only if the number of iteration is at least halved with respect to alternative approaches, this extra
cost would be justify. Nevertheless, a more e�cient approach to solve the system of Eq. (63) is under
development, which leads to a much smaller overdetermined system of equations with the number of
unknowns equal to the number of experimental measures.

Fig. 16. Two real ¯aws: geometry, boundary conditions, actual and initial con®guration.

Table 5

Simulated experimental data for the problem with two ¯aws (q ¯ux, u potential)

Node Coordinates Data

2 (2.00, 0.25) (q ) ÿ176.42
3 (2.00, 0.50) (q ) ÿ176.22
5 (2.00, 1.00) (q ) ÿ171.16
7 (2.00, 1.50) (q ) ÿ166.81
8 (2.00, 1.75) (q ) ÿ171.95
10 (1.75, 2.00) (u ) 93.59

11 (1.50, 2.00) (u ) 137.94

12 (1.25, 2.00) (u ) 183.09

14 (0.75, 2.00) (u ) 271.31

16 (0.25, 2.00) (u ) 357.17

18 (0.00, 1.75) (q ) 171.26

19 (0.00, 1.50) (q ) 171.29

20 (0.00, 1.25) (q ) 171.52

22 (0.00, 0.75) (q ) 172.51

24 (0.00, 0.50) (q ) 173.30

26 (0.25, 0.00) (u ) 356.64

27 (0.50, 0.00) (u ) 313.22

28 (0.75, 0.00) (u ) 269.70

30 (1.25, 0.00) (u ) 182.17

32 (1.75, 0.00) (u ) 94.10

R. Gallego, J. SuaÂrez / International Journal of Solids and Structures 37 (2000) 5629±5652 5651



Acknowledgements

This work was supported by the DireccioÂ n General de EnsenÄ anza Superior of Spain under the
Research Project No. PB96-1409.

References

Bonnet, M., 1995. BIE and material di�erentiation applied to the formulation of obstacle inverse problems. Engrg. Anal.

Boundary Elements 15, 121±136.

Bui, H.D., 1994. Inverse Problems in the Mechanics of Materials: An Introduction. CRC Press, Boca Raton.

Brebbia, C.A., Dominguez, J., 1978. Boundary Elements: An Introductory Course. Computational Mechanics Publications,

Southampton.

Gallego, R., Suarez, J., 1999. Numerical solution of a new variation boundary integral equation for inverse problems. Int. J.

Numer. Methods Engrg, in press.

Gallego, R., DomõÂ nguez, J., 1996. Hypersingular BEM for transient elastodynamics. Int. J. Numer. Methods Engrg 39 (10), 1681±

1705.

Guiggiani, M., 1992. Direct evaluation of hypersingular integrals in 2D BEM. In: Hackbusch, W. (Ed.), Notes on Numerical Fluid

Mechanics, vol. 33. Vieweg, Braunschweig, pp. 23±34.

Mitra, A.K., Das, S., 1992. Solution of inverse problem by using the boundary element method, Boundary Element Technology

XVII. Computational Mechanics Publications, Southampton, pp. 721±731.

Mellings, S.C., Aliabadi, M.H., 1993. Dual boundary element formulation for inverse potential problems in crack identi®cation.

Engrg. Anal. Boundary Elements 12, 275±281.

Nishimura, N., Kobayashi, S., 1991. A boundary integral equation method for an inverse problem related to crack detection. Int.

J. Numer. Methods Engrg 32, 1371±1387.

Nishimura, N., Kobayashi, S., 1994. Determination of cracks having arbitrary shapes with the boundary integral equation method.

Engrg. Anal. Boundary Elements 15, 189±195.

Nishimura, N., 1997. Cracks determination problems. In: Yagawa, G., Miki, C. (Eds.), Theoretical and Applied Mechanics, vol.

46, pp. 39±57.

Tanaka, M., Masuda, Y., 1989. Boundary element method applied to some inverse problems. Engineering Analysis 3 (3), 138±143.

Zeng, X., Saigal, S., 1992. An inverse formulation with boundary elements. Journal of Applied Mechanics 59, 835±840.

Fig. 17. Two real ¯aws: intermediate and ®nal computed ¯aw.

R. Gallego, J. SuaÂrez / International Journal of Solids and Structures 37 (2000) 5629±56525652


